Welcome to Data C88C!

Lecture 21: Tables

Wednesday, July 30th, 2025

Week 6

Summer 2025

Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

e Mid-semester survey feedback: [link] (extended, due tonight!!!)

* If 75% of the class completes this form by tonight (Wednesday July 30th 11:59 PM), everyone will
receive 1 point of extra credit! If this goal is not met, nobody will receive the extra point.

» As of today (July 30th, 3:07 PM PST): 65% of the class has completed the survey
e Midterm regrades: due this Friday

» Midterm solutions doc released: [link]
e August 1st: Change Grade Option deadline
e Ants project is ongoing! Checkpoint due Mon Aug 4th

https://edstem.org/us/courses/79702/discussion/6831459
https://docs.google.com/document/d/1uOXO5uPLX9ffUtorZQukRtpJhOZ2eAum-Ni6hukVfA4/edit?tab=t.0

| ecture Overview

e More SQL
e Joins

Joining Tables

Joining tables together

e Joining tables allows you to combine rows from two (or more)

tables

e EX: suppose | have two tables, prices and orders . I'd like to
compute how much money |I've made per product.

e Here is a query that achieves this:

> select prices.name, quantity_sold * price as total_money
mmmm) from prices, orders
where prices.name

name
burger
fries

total_money
45.5
50

hot cocoa 9.9

soda

22

orders.name;

prices

name

soda
burger
fries

hot cocoa

coffee

orders
name

soda
burger
fries

hot cocoa

secret i1tem

price

© O N W
O

. (5

quantity_sold
20

15

25

11

1

Joining tables together

Generates all possible pairs of rows
between prices and orders (aka
"Cartesian product”, "cross join")

Alternate syntax:

select * from prices cross join orders;

~a

> select *

from prices, orders;

name price

burger
burger
burger
burger
coffee
coffee
coffee
coffee
coffee
fries
fries
fries
fries
fries
hot cocoa

purger 3.

N NN NDNOOOOOWWWW

name quantity_sold
burger 13
fries 25
hot cocoa 11
secret 1tem 1
soda 20
burger 13
fries 25
hot cocoa 11
secret 1tem 1
soda 20
burger 13
fries 25
hot cocoa 11
secret 1tem 1
soda 20
0.9 burger 13

Joining tables together

Generates all possible pairs of rows

between prices and orders (aka \

"Cartesian product”, "cross join") > select *

from prices, orders
where prices.name = orders.name;

Adding this filter criterion restricts /

_ name price name quantity_sold
to just the rows we care about burger 3.5 burger 13
(‘Join criterion’) fries 2 fries 25
hot cocoa 0.9 hot cocoa 11

soda 1.1 soda 20

Alternate syntax (much more common in practice):
select * from prices join orders on prices.name = orders.name;

http://prices.name

Dog Family Tree

CREATE TABLE parents AS

SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT

"ace" AS parent,

llacell
"daisy"
"finn"
"finn"
"finn"
"ellie"

.

"bella"™ AS child UNION

"charlie" UNION
"hank" UNION
Tace" UNION
"daisy" UNION
"ginger" UNION

"finn";

Ace

/N

Bella

Charlie

Elliie

Finn

Daisy

l

Hank

Ginger

Joining Two Tables

Two tables A & B are joined by a comma to yield all combos of a row from A & a row from B

CREATE TABLE dogs AS
SELECT '"ace" AS name, "long'" AS fur UNION

SELECT "bella" , "short" UNION
SELECT '"charlie" , ""Long" UNION
SELECT '"daisy" , ""Long" UNION
SELECT "ellie" , "short" UNION
SELECT "finn" , 'curly" UNION
SELECT "ginger" , "'short" UNION
SELECT "hank" , 'curly'";

CREATE TABLE parents AS
SELECT "ace" AS parent, "bella" AS child UNION
SELECT '"ace" , '"'"charlie" UNION

*)
Select the parents of curly-furred dogs
SELECT parent FROM,parents, dogs

WHERE child = name AND fur = "curly";

SELECT parent FROM parents JOIN dogs
ON child = name WHERE fur = "curly'";
(Demo 21.sql:Demo00)

Discussion Question

CREATE TABLE dogs AS
SELECT '"ace" AS name, "long'" AS fur UNION

SELECT "bella" , "short" UNION

SELECT '"charlie" , ""Long" UNION

SELECT '"daisy" , ""Long" UNION

SELECT "ellie" , "short" UNION

SELECT "finn" , 'curly" UNION

SELECT "ginger" , "'short" UNION

SELECT "hank" , 'curly'";

CREATE TABLE parents AS
SELECT "ace" AS parent, '"bella" AS child UNION |

SELECT '"ace" , '"'"charlie" UNION

Show the name and fur of the parents of Daisy and Bella R | S

Aliases and Dot Expressions

Joining a Table with Itself

Two tables may share a column name; dot expressions and aliases disambiguate column values

SELECT [columns] FROM [table] WHERE [condition] ORDER BY [order];

[table] is a comma-separated list of table names with optional aliases

Select all pairs of siblings

SELECT a.child AS first, b.child AS second
FROM parents AS a, parents AS b
WHERE a.parent = b.parent AND a.child < b.child;

first second
bella charlie
ace daisy
ace ginger

daisy ginger

(Demo 21.sql:Demo01)

Example: Dog Triples

Fall 2014 Quiz Question (Slightly Modified)

Write a SQL query that selects all possible combinations of three different dogs with the same fur and lists each
triple in inverse alphabetical order

CREATE TABLE dogs AS
SELECT "ace" AS name, "long'" AS fur UNION

SELECT "bella" , ""'short" UNION

3
CREATE TABLE parents AS

SELECT '"ace'" AS parent, "bella" AS child UNION
SELECT "ace" , "'"charlie" UNION

*)

Expected output:

daisy|charlie]|ace
ginger|ellie|bella

(Demo 21.sgl:Demo02)

SQL string concatenation: ||

. We can concatenate strings via the || operator

> select "hello," || " world";
hello, world

> select "the price of " || prices.name || " 1s:

from prices;

t

t & t t

ne
ne
ne
ne

ne

orice
orice
orice
orice

orice

of
of
of
of
of

burger is: 3.5
coffee 1is:

fries 1is:

2.0

hot cocoa 1s:

soda 1s:

1.1

0.75

0.9

" || prices.price

prices

name

soda
burger
fries

hot cocoa

coffee

orders
name

soda
burger
fries

hot cocoa

secret i1tem

price

© O N W
O

. (5

quantity_sold
20

15

25

11

1

