
Welcome to Data C88C!

Lecture 21: Tables
Wednesday, July 30th, 2025
Week 6
Summer 2025
Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

● Mid-semester survey feedback: [link] (extended, due tonight!!!)
• If 75% of the class completes this form by tonight (Wednesday July 30th 11:59 PM), everyone will

receive 1 point of extra credit! If this goal is not met, nobody will receive the extra point.
• As of today (July 30th, 3:07 PM PST): 65% of the class has completed the survey

● Midterm regrades: due this Friday
• Midterm solutions doc released: [link]

● August 1st: Change Grade Option deadline
● Ants project is ongoing! Checkpoint due Mon Aug 4th

https://edstem.org/us/courses/79702/discussion/6831459
https://docs.google.com/document/d/1uOXO5uPLX9ffUtorZQukRtpJhOZ2eAum-Ni6hukVfA4/edit?tab=t.0

Lecture Overview

● More SQL
• Joins

Joining Tables

Joining tables together

● Joining tables allows you to combine rows from two (or more)
tables

● Ex: suppose I have two tables, `prices` and `orders`. I'd like to
compute how much money I've made per product.

● Here is a query that achieves this:

name price

soda 1.1

burger 3.5

fries 2.0

hot cocoa 0.9

coffee 0.75

name quantity_sold

soda 20

burger 15

fries 25

hot cocoa 11

secret item 1

> select prices.name, quantity_sold * price as total_money
from prices, orders
where prices.name = orders.name;

name total_money
burger 45.5
fries 50
hot cocoa 9.9
soda 22

prices

orders

Joining tables together

> select *
from prices, orders;

name price name quantity_sold
 burger 3.5 burger 13
 burger 3.5 fries 25
 burger 3.5 hot cocoa 11
 burger 3.5 secret item 1
 burger 3.5 soda 20
 coffee 0.75 burger 13
 coffee 0.75 fries 25
 coffee 0.75 hot cocoa 11
 coffee 0.75 secret item 1
 coffee 0.75 soda 20
 fries 2 burger 13
 fries 2 fries 25
 fries 2 hot cocoa 11
 fries 2 secret item 1
 fries 2 soda 20
 hot cocoa 0.9 burger 13
...

Generates all possible pairs of rows
between `prices` and `orders` (aka
"Cartesian product", "cross join")

Alternate syntax:
select * from prices cross join orders;

Joining tables together

> select *
from prices, orders
where prices.name = orders.name;

name price name quantity_sold
burger 3.5 burger 13
fries 2 fries 25
hot cocoa 0.9 hot cocoa 11
soda 1.1 soda 20

Generates all possible pairs of rows
between `prices` and `orders` (aka
"Cartesian product", "cross join")

Adding this filter criterion restricts
to just the rows we care about
("join criterion")

Alternate syntax (much more common in practice):
select * from prices join orders on prices.name = orders.name;

http://prices.name

Dog Family Tree

8

Charlie

Ginger

CREATE TABLE parents AS
 SELECT "ace" AS parent, "bella" AS child UNION
 SELECT "ace" , "charlie" UNION
 SELECT "daisy" , "hank" UNION
 SELECT "finn" , "ace" UNION
 SELECT "finn" , "daisy" UNION
 SELECT "finn" , "ginger" UNION
 SELECT "ellie" , "finn";

Ellie

Finn

Ace

Bella

Daisy

Hank

Joining Two Tables
Two tables A & B are joined by a comma to yield all combos of a row from A & a row from B

9

E

F

A D G

B C H

CREATE TABLE dogs AS
 SELECT "ace" AS name, "long" AS fur UNION
 SELECT "bella" , "short" UNION
 SELECT "charlie" , "long" UNION
 SELECT "daisy" , "long" UNION
 SELECT "ellie" , "short" UNION
 SELECT "finn" , "curly" UNION
 SELECT "ginger" , "short" UNION
 SELECT "hank" , "curly";
CREATE TABLE parents AS
 SELECT "ace" AS parent, "bella" AS child UNION
 SELECT "ace" , "charlie" UNION
 ...;

Select the parents of curly-furred dogs
SELECT parent FROM parents, dogs

 WHERE child = name AND fur = "curly";

(Demo 21.sql:Demo00)

SELECT parent FROM parents JOIN dogs

 ON child = name WHERE fur = "curly";

Discussion Question

1
0

E

F

A D G

B C H

CREATE TABLE dogs AS
 SELECT "ace" AS name, "long" AS fur UNION
 SELECT "bella" , "short" UNION
 SELECT "charlie" , "long" UNION
 SELECT "daisy" , "long" UNION
 SELECT "ellie" , "short" UNION
 SELECT "finn" , "curly" UNION
 SELECT "ginger" , "short" UNION
 SELECT "hank" , "curly";
CREATE TABLE parents AS
 SELECT "ace" AS parent, "bella" AS child UNION
 SELECT "ace" , "charlie" UNION
 ...;

Show the name and fur of the parents of Daisy and Bella

SELECT name, fur FROM parents JOIN dogs ON _____________

 WHERE ________________________________;

parent=name

child="daisy" or child="bella"

Aliases and Dot Expressions

Joining a Table with Itself

Two tables may share a column name; dot expressions and aliases disambiguate column values

1
2

E

F

A D G

B C H

SELECT [columns] FROM [table] WHERE [condition] ORDER BY [order];

[table] is a comma-separated list of table names with optional aliases

Select all pairs of siblings

SELECT a.child AS first, b.child AS second

 FROM parents AS a, parents AS b

 WHERE a.parent = b.parent AND a.child < b.child;

first second
bella charlie
ace daisy
ace ginger

daisy ginger

(Demo 21.sql:Demo01)

Example: Dog Triples

Fall 2014 Quiz Question (Slightly Modified)

Write a SQL query that selects all possible combinations of three different dogs with the same fur and lists each
triple in inverse alphabetical order

14

Expected output:

daisy|charlie|ace
ginger|ellie|bella

E

F

A D G

B C H

CREATE TABLE dogs AS

 SELECT "ace" AS name, "long" AS fur UNION

 SELECT "bella" , "short" UNION

 ...;

CREATE TABLE parents AS
 SELECT "ace" AS parent, "bella" AS child UNION
 SELECT "ace" , "charlie" UNION
 ...;

(Demo 21.sql:Demo02)

SQL string concatenation: `||`

● We can concatenate strings via the `||` operator

> select "hello," || " world";
hello, world

> select "the price of " || prices.name || " is: " || prices.price
from prices;
the price of burger is: 3.5
the price of coffee is: 0.75
the price of fries is: 2.0
the price of hot cocoa is: 0.9
the price of soda is: 1.1

name price

soda 1.1

burger 3.5

fries 2.0

hot cocoa 0.9

coffee 0.75

name quantity_sold

soda 20

burger 15

fries 25

hot cocoa 11

secret item 1

prices

orders

