
Welcome to Data C88C!

Lecture 23: Designing Functions
Monday, August 4th, 2025
Week 7
Summer 2025
Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

● Ants project checkpoint due tonight (Mon Aug 4th)
● End-of-semester surveys [link]

• If 65% or more students complete both surveys by Friday August 15th at 11:59 PM, then everyone will
receive 0.5 point of extra credit! If this goal is not met, nobody will receive the extra point.

• If 75% or more students complete both surveys by Friday August 15th at 11:59 PM, then everyone will
receive 0.5 additional point of extra credit.

● Please submit your "Ask Me Anything" (AMA) questions to Ed: [link]
● No lab this week!

https://edstem.org/us/courses/79702/discussion/6850001
https://edstem.org/us/courses/79702/discussion/6850653

Final Exam Logistics

● Please read this Ed post very carefully: [link]
● Final exam: Tuesday August 12th, 3:00pm-5:00pm PT
● Alternate times

○ Tuesday, August 12th, 7:00 pm-9:00pm PT
○ Wednesday, August 13th, 8:20am-10:20am PT

● Gradescope online exam, Zoom proctoring
○ Two page handwritten cheatsheet allowed (see Ed post for details)
○ Final exam reference sheet: [link]
○ (same setup as the Midterm)

● If you can't make any of these times, please fill out the form linked in the above Ed post and let us know
ASAP

●

https://edstem.org/us/courses/79702/discussion/6846388
https://drive.google.com/file/d/1YvZK3cuGBPRq63S6db7sp_k2i4KWJrEO/view?usp=drive_link

Lecture Overview

● SQL
• Query execution order
• Subqueries

● (For fun) Python type annotations, type systems

SQL order of execution

Order of execution:

1. FROM: Fetch the tables and compute the cross product of R1, R2, …

2. WHERE: "Row filter." For each tuple from step 1, keep only those that satisfy condition C1

3. SELECT: add to output based on S

SELECT S
FROM R1, R2, ...
WHERE C1;

3
1
2

SQL order of execution

SELECT S
FROM R1, R2, ...
WHERE C1;

3
1
2

SELECT flavor, price * 2
FROM cones
WHERE price > 4;

Flavor Color Price

strawberry pink 3.55

chocolate light brown 4.75

chocolate dark brown 5.25

strawberry pink 5.25

bubblegum pink 4.75

Flavor Color Price

chocolate light brown 4.75

chocolate dark brown 5.25

strawberry pink 5.25

bubblegum pink 4.75

Flavor price * 2

chocolate 9.5

chocolate 10.5

strawberry 10.5

bubblegum 9.5

FROM cones

WHERE price > 4

SELECT flavor, price * 2

Simulation of SQL query execution (in order)

SQL order of execution

Order of execution:

1. FROM: Fetch the tables and compute the cross product of R1, R2, …

2. WHERE: "Row filter." For each tuple from step 1, keep only those that satisfy condition C1

3. GROUP BY: For each group, compute all aggregates needed in C2 and S

4. HAVING: For each group, check if C2 is satisfied

5. SELECT: add to output based on S

SELECT S
FROM R1, R2, ...
WHERE C1
GROUP BY A1, A2, ...
HAVING C2;

5
1
2
3
4

Tip: aggregations (GROUP BY) happen after
filtering (WHERE)

SQL order of execution
SELECT S
FROM R1, R2, ...
WHERE C1
GROUP BY A1, A2, ...
HAVING C2;

5
1
2
3
4

SELECT flavor, MAX(price * 2)
FROM cones
WHERE price > 4
GROUP BY flavor
HAVING max(price) - min(price) <= 0.25;

Flavor Color Price

strawberry pink 3.55

chocolate light brown 4.75

chocolate dark brown 5.25

strawberry pink 5.25

bubblegum pink 4.75

Flavor Color Price

chocolate light brown 4.75

chocolate dark brown 5.25

strawberry pink 5.25

bubblegum pink 4.75

Flavor max(price) * 2

strawberry 10.5

bubblegum 9.5

FROM cones WHERE price > 4

SELECT flavor, MAX(price * 2)

Simulation of SQL query execution (in order)

GROUP BY flavor Flavor Color Price

chocolate light brown 4.75

chocolate dark brown 5.25

strawberry pink 5.25

bubblegum pink 4.75

HAVING max(price) - min(price) <= 0.25 Flavor Color Price

strawberry pink 5.25

bubblegum pink 4.75

SQL execution order

SELECT S
FROM R1, R2, ...
WHERE C1
JOIN J1 ON J2
GROUP BY A1, A2, ...
HAVING C2
ORDER BY O1
LIMIT L1;

5
1
2
1
3
4
6
7

FROM R1, R2, ...
JOIN J1 ON J2
WHERE C1
GROUP BY A1, A2, ...
HAVING C2
SELECT S
ORDER BY O1
LIMIT L1;

1
1
2
3
4
5
6
7

SQL "written" order SQL execution order

SELECT flavor, prices * 2 AS prices_2x
FROM cones
WHERE prices_2x <= 5;

Fun fact: most SQL implementations don't let you use column aliases
defined in SELECT in the WHERE clause. But, sqlite3 lets you: [link]

FROM cones
WHERE prices_2x <= 5
SELECT flavor, prices * 2 AS prices_2x

Most SQL implementations will throw
an error like "column name `prices_2x`
not defined", but this works in sqlite3!

In this course, we will accept this
query.

https://stackoverflow.com/a/10923190

Subqueries ("nested" queries)

SELECT flavor, max(price * 2) as max_price_2x
FROM cones
WHERE price > 4
GROUP BY flavor
HAVING max(price) - min(price) <= 0.25;

Flavor max_price_2x

strawberry 10.5

bubblegum 9.5

What if I wanted to do additional processing to the
query output? Ex: add an additional filter like:
"only fetch rows where `max_price_2x >= 10"?

SELECT flavor, max(price * 2) as max_price_2x
FROM cones
WHERE price > 4
GROUP BY flavor
HAVING max(price) - min(price) <= 0.25
WHERE max_price_2x >= 10;

Error: near "WHERE": syntax error

Solution: use a subquery:

SELECT a.flavor, a.max_price_2x
FROM
(
 SELECT flavor, MAX(price * 2) as max_price_2x
 FROM cones
 WHERE price > 4
 GROUP BY flavor
 HAVING max(price) - min(price) <= 0.25
) a
WHERE
a.max_price_2x >= 10;

subquery output table
alias `a`

Can add more here, like an additional
GROUP BY, HAVING, etc...

Takeaway: Subqueries have additional
forms beyond this one.
In this class (C88C SU25), we'll
study only this form of subquery
("FROM" type).
If you're curious to learn more about the other
subquery forms, see: [link]

https://www.datacamp.com/tutorial/sql-subquery

(reference) SQL in C88C (v2)

● Here is all of the SQL that we cover in C88C that you (the student) are responsible for
○ There is more to SQL than this, but this is a good starting point

SELECT select_list

[FROM table_source(s)] [WHERE search_condition]

[JOIN table ON join_condition]

[GROUP BY group_by_expression]

[HAVING search_condition]

[ORDER BY order_expression [ASC | DESC]]

[LIMIT [limit]];

https://learn.microsoft.com/en-us/sql/t-sql/queries/select-transact-sql?view=sql-
server-ver17

CREATE TABLE [table_name] AS
 SELECT [val1] AS [col1], [val2] AS [col2], ... UNION
 SELECT [val3], [val4], ... UNION
 SELECT [val5], [val6], ...;

aggregator functions (used with GROUP BY)
min(), max(), avg(), sum(), count(),
count(distinct x), count(*)

aliasing
select colA AS colA_alias ...

subqueries ("FROM" type only)
SELECT select_list
FROM (
 SELECT ...
) subquery_alias
...the rest of your query...

operators
comparison: =, >, <, <=, >=, != (or <>)
boolean: AND, OR
arithmetic: +, -, *, /
concatenation: ||

https://learn.microsoft.com/en-us/sql/t-sql/queries/select-transact-sql?view=sql-server-ver17
https://learn.microsoft.com/en-us/sql/t-sql/queries/select-transact-sql?view=sql-server-ver17

(For fun) Python type annotations ("type hints")

● Python 3 has support for type annotations [link]
● Main idea: syntax to describe the input and output types of your functions and variables

def square_nums(nums):
 if not nums:
 return []
 return [nums ** 2] + square_nums(nums[1:])

def square_nums_anno(nums: list[int]) -> list[int]:
 if not nums:
 return []
 return [nums[0] ** 2] + square_nums_anno(nums[1:])

`list[int]` means: a `list` where
each element is type `int`

Parameter `nums` is
of type `list[int]`

Returns a
`list[int]`

https://docs.python.org/3.11/library/typing.html

from typing import Optional

def some_fn(b: float, d: dict[str, float]) -> Optional[float]:
 if b <= 3.14:
 return None
 return d["pi"] * 2.5

(For fun) Python type annotations

● Useful type annotation patterns

dict with key type `str`,
value type `float`

Returns either a
`float`, or `None`

More in these docs: [link]

from typing import Union

def another_fn(a_int_or_str: Union[int, str]) -> tuple[int, str, float]:
 a_int = int(a_int_or_str)
 return a_int, 's', 3.14

Has type either
`int` or `str`

Returns an `int`, a
`str`, and a `float` (all

in a single tuple)

from typing import Callable

def my_hof(fn: Callable[[int, int], int]) -> int:
 return fn(1, 2)

A two-arg fn (int, int)
that returns an int

https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html

(For fun) Python type annotations

● Most Python code editors support type checking (including VSCode!), and will warn you if it detects a type violation
● Great way to catch type-related bugs at "compile time" rather than at runtime

To enable Python type checking in VSCode, ensure that your Python
extension is installed + active, and that it also installed Pylance (it does by
default). Then, set: python.analysis.typeCheckingMode = 'standard' [link]

Note: for a variety of technical reasons, these Python type
checkers can never be 100% accurate, but in practice they're
highly effective!

https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance

(For fun) Programming language type systems

● Every programming language has a type system that defines rules on things like types of variables
● Static typing: variable types are defined in the code (often explicitly by the programmer), aka "at compile time"

○ Guarantees "type safety" of code, eliminating many kinds of bugs, at the possible cost of dev convenience/velocity
● Dynamic typing: variable types are determined at runtime

○ More flexible, but more runtime errors

int some_fn(int x, float y) {
 int tmp = 2;
 if (y == 3.14) {
 return x * tmp;
 else {
 return x;
 }
}

Static typing (Ex: C/C++, Java)

def some_fn(x, y):
 tmp = 2
 if y == 3.14:
 return x * tmp
 else:
 return x

Dynamic typing (Ex: Python)

Python lets me pass in anything for `x,y`
The code will still run!
>>> some_fn('hi', 3.14)
hihi

// In C/C++, this code will NOT run, as it fails
// the compiler type checker
int out = some_fn("hi", 3.14);

Compile Error: type string is not type int

(For fun) Programming language type systems

● Python does not enforce type annotations: they are metadata that are ignored during runtime

def some_fn(x, y):
 tmp = 2
 if y == 3.14:
 return x * tmp
 else:
 return x

Python lets me pass in anything for `x,y`
The code will still run!
>>> some_fn('hi', 3.14)
hihi

def some_fn_anno(x: int, y: float) -> int:
 tmp = 2
 if y == 3.14:
 return x * tmp
 else:
 return x

Despite violating the type annotations,
the code will still run!
>>> some_fn_anno('hi', 3.14)
hihi

Instead, third-party developer tools like Pylance [link] and mypy [link]
use the type annotations to perform type checking, often integrated with
an IDE like VSCode, PyCharm, etc.
Even though the type annotations aren't enforced, it's still a useful signal
for developers to use, especially on large codebases.

Aside: some people may feel that treating Python as a statically
typed language (via type annotations) violates the spirit of
Python's dynamic ("duck") typing.
Personally: I feel that type annotations helps make code easier to
understand and maintain. I've embraced it in both my professional
and personal Python projects, and over the past few years I see
them more regularly in production-quality Python code.

https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance
https://mypy-lang.org/

