
DATA C88C Control, Environment Diagrams
Summer 2025 Discussion 2: June 25, 2025

While and If
Learning to use if and while is an essential skill. During this discussion, focus on what we’ve studied in the first
three lectures: if, while, assignment (=), comparison (<, >, ==, …), and arithmetic. Please don’t use features of
Python that we haven’t discussed in class yet, such as for, range, and lists. We’ll have plenty of time for those later
in the course, but now is the time to practice the use of if (textbook section 1.5.4) and while (textbook section
1.5.5).

Q1: Fizzbuzz

Implement the classic Fizz Buzz sequence. The fizzbuzz function takes a positive integer n and prints out a single
line for each integer from 1 to n. For each i:

• If i is divisible by both 3 and 5, print fizzbuzz.
• If i is divisible by 3 (but not 5), print fizz.
• If i is divisible by 5 (but not 3), print buzz.
• Otherwise, print the number i.

Try to make your implementation of fizzbuzz concise.

https://www.composingprograms.com/pages/15-control.html#conditional-statements
https://www.composingprograms.com/pages/15-control.html#conditional-statements
https://en.wikipedia.org/wiki/Fizz_buzz

2 Control, Environment Diagrams

def fizzbuzz(n):
"""
>>> result = fizzbuzz(16)
1
2
fizz
4
buzz
fizz
7
8
fizz
buzz
11
fizz
13
14
fizzbuzz
16
>>> print(result)
None
"""
i = 1
while i <= n:

if i % 3 == 0 and i % 5 == 0:
print('fizzbuzz')

elif i % 3 == 0:
print('fizz')

elif i % 5 == 0:
print('buzz')

else:
print(i)

i += 1

Video walkthrough

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://youtu.be/-Y2JdHG1aK8

Control, Environment Diagrams 3

Problem Solving
A useful approach to implementing a function is to: 1. Pick an example input and corresponding output. 2.
Describe a process (in English) that computes the output from the input using simple steps. 3. Figure out what
additional names you’ll need to carry out this process. 4. Implement the process in code using those additional
names. 5. Determine whether the implementation really works on your original example. 6. Determine whether the
implementation really works on other examples. (If not, you might need to revise step 2.)

Importantly, this approach doesn’t go straight from reading a question to writing code.

For example, in the is_prime problem below, you could: 1. Pick n is 9 as the input and False as the output. 2.
Here’s a process: Check that 9 (n) is not a multiple of any integers between 1 and 9 (n). 3. Introduce i to represent
each number between 1 and 9 (n). 4. Implement is_prime (you get to do this part with your group). 5. Check
that is_prime(9) will return False by thinking through the execution of the code. 6. Check that is_prime(3) will
return True and is_prime(1) will return False.

Try this approach together on the next two problems.

Important: It’s highly recommended that you don’t check your work using a computer right away. Instead, talk to
people around you and think to try to figure out if an answer is correct. On exams, you won’t be able to guess and
check because you won’t have a Python interpreter. Now is a great time to practice checking your work by thinking
through examples. You could even draw an environment diagram!

If you’re not sure about how something works or get stuck, ask for help from the course staff.

Q2: Is Prime?

Write a function that returns True if a positive integer n is a prime number and False otherwise.

A prime number n is a number that is not divisible by any numbers other than 1 and n itself. For example, 13 is
prime, since it is only divisible by 1 and 13, but 14 is not, since it is divisible by 1, 2, 7, and 14.

Use the % operator: x % y returns the remainder of x when divided by y.

def is_prime(n):
"""
>>> is_prime(10)
False
>>> is_prime(7)
True
>>> is_prime(1) # one is not a prime number!!
False
"""
if n == 1:

return False
k = 2
while k < n:

if n % k == 0:
return False

k += 1
return True

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Control, Environment Diagrams

Q3: Unique Digits

Write a function that returns the number of unique digits in a positive integer.

Hints: You can use // and % to separate a positive integer into its one’s digit and the rest of its digits.

You may find it helpful to first define a function has_digit(n, k), which determines whether a number
n has digit k.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Control, Environment Diagrams 5

def unique_digits(n):
"""Return the number of unique digits in positive integer n.

>>> unique_digits(8675309) # All are unique
7
>>> unique_digits(13173131) # 1, 3, and 7
3
>>> unique_digits(101) # 0 and 1
2
"""
unique = 0
while n > 0:

last = n % 10
n = n // 10
if not has_digit(n, last):

unique += 1
return unique

Alternate solution
def unique_digits_alt(n):

unique = 0
i = 0
while i < 10:

if has_digit(n, i):
unique += 1

i += 1
return unique

def has_digit(n, k):
"""Returns whether k is a digit in n.

>>> has_digit(10, 1)
True
>>> has_digit(12, 7)
False
"""
assert k >= 0 and k < 10
while n > 0:

last = n % 10
n = n // 10
if last == k:

return True
return False

We have provided two solutions: - In one solution, we look at the current digit, and check if the rest of the number
contains that digit or not. We only say it’s unique if the digit doesn’t exist in the rest. We do this for every digit. -

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Control, Environment Diagrams

In the other, we loop through the numbers 0-9 and just call has_digit on each one. If it returns true then we know
the entire number contains that digit and we can one to our unique count.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	While and If
	Q1: Fizzbuzz

	Problem Solving
	Q2: Is Prime?
	Q3: Unique Digits

