
DATA C88C Inheritance, Linked Lists
Summer 2025 Discussion 8: July 22, 2025

Linked Lists
A linked list is a Link object or Link.empty.

You can mutate a Link object s in two ways: - Change the first element with s.first = ... - Change the rest of
the elements with s.rest = ...

You can make a new Link object by calling Link: - Link(4) makes a linked list of length 1 containing 4. - Link(4, s)
makes a linked list that starts with 4 followed by the elements of linked list s.

class Link:
"""A linked list is either a Link object or Link.empty

>>> s = Link(3, Link(4, Link(5)))
>>> s.rest
Link(4, Link(5))
>>> s.rest.rest.rest is Link.empty
True
>>> s.rest.first * 2
8
>>> print(s)
<3 4 5>
"""
empty = ()

def __init__(self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

def __repr__(self):
if self.rest:

rest_repr = ', ' + repr(self.rest)
else:

rest_repr = ''
return 'Link(' + repr(self.first) + rest_repr + ')'

def __str__(self):
string = '<'
while self.rest is not Link.empty:

string += str(self.first) + ' '
self = self.rest

return string + str(self.first) + '>'

2 Inheritance, Linked Lists

Q1: Sum Two Ways

Implement both sum_rec and sum_iter. Each one takes a linked list of numbers s and a non-negative integer k and
returns the sum of the first k elements of s. If there are fewer than k elements in s, all of them are summed. If k is
0 or s is empty, the sum is 0.

Use recursion to implement sum_rec. Don’t use recursion to implement sum_iter; use a while loop instead.

def sum_rec(s, k):
"""Return the sum of the first k elements in s.

>>> a = Link(1, Link(6, Link(8)))
>>> sum_rec(a, 2)
7
>>> sum_rec(a, 5)
15
>>> sum_rec(Link.empty, 1)
0
"""
Use a recursive call to sum_rec; don't call sum_iter
if k == 0 or s is Link.empty:

return 0
return s.first + sum_rec(s.rest, k - 1)

def sum_iter(s, k):
"""Return the sum of the first k elements in s.

>>> a = Link(1, Link(6, Link(8)))
>>> sum_iter(a, 2)
7
>>> sum_iter(a, 5)
15
>>> sum_iter(Link.empty, 1)
0
"""
Don't call sum_rec or sum_iter
total = 0
while k > 0 and s is not Link.empty:

total, s, k = total + s.first, s.rest, k - 1
return total

Discussion time: When adding up numbers, the intermediate sums depend on the order. (1 + 3) + 5 and 1 +
(3 + 5) both equal 9, but the first one makes 4 along the way while the second makes 8 along the way. For the

same linked list s and length k, will sum_rec and sum_iter both make the same intermediate sums along the way?

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Inheritance, Linked Lists 3

Q2: Every Other

Implement every_other, which takes a linked list s. It mutates s such that all of the odd-indexed elements (using
0-based indexing) are removed from the list. For example:

>>> s = Link('a', Link('b', Link('c', Link('d'))))
>>> every_other(s)
>>> s.first
'a'
>>> s.rest.first
'c'
>>> s.rest.rest is Link.empty
True

If s contains fewer than two elements, s remains unchanged.

Do not return anything! every_other should mutate the original list.

def every_other(s):
"""Mutates a linked list so that all the odd-indiced elements are removed
(using 0-based indexing).

>>> s = Link(1, Link(2, Link(3, Link(4))))
>>> every_other(s)
>>> s
Link(1, Link(3))
>>> odd_length = Link(5, Link(3, Link(1)))
>>> every_other(odd_length)
>>> odd_length
Link(5, Link(1))
>>> singleton = Link(4)
>>> every_other(singleton)
>>> singleton
Link(4)
"""
if s is Link.empty or s.rest is Link.empty:

return
else:

s.rest = s.rest.rest
every_other(s.rest)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Inheritance, Linked Lists

Inheritance
Q3: Cat

Below is the implementation of a Pet class. Each pet has two instance attributes (name and owner), as well as one
instance method (talk).

class Pet:

def __init__(self, name, owner):
self.name = name
self.owner = owner

def talk(self):
print(self.name)

Implement the Cat class, which inherits from the Pet class seen above. To complete the implementation, override or
implement the following methods:

___init___

Set the Cat’s name and owner attributes, and also add 2 new attributes:

1. is_hungry - should be set to False
2. fullness - should be set to whatever the fullness parameter is

Hint: You can call the __init__ method of Pet (the superclass of Cat) to set a cat’s name and owner
using super().

talk

Print out a cat’s greeting, which is "<name of cat> says meow!".

get_hungry

Decrements a cat’s fullness level by 1. When fullness reaches zero, is_hungry becomes True. If this is called
after fullness has already reached zero, print the message "<name of cat> is hungry."

eat

This method is called when the cat eats some food.

If the cat is hungry, after calling this method both of the following should be true:

1. The cat’s fullness value should be set to whatever Cat.default_fullness is.
2. The cat’s is_hungry value should be False.

Also print out the food the cat ate. For example, if a cat named Thomas ate fish, print out 'Thomas ate a fish!'

Otherwise, if the cat wasn’t hungry, print '<name of cat> is not hungry.'

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Inheritance, Linked Lists 5

class Cat(Pet):
default_fullness = 5

def __init__(self, name, owner, fullness=default_fullness):
"""
>>> cat = Cat('Thomas', 'Tammy')
>>> cat.name
'Thomas'
>>> cat.owner
'Tammy'
>>> cat.fullness # use default fullness value
5
>>> cat.is_hungry
False
>>> cat2 = Cat('Meow Meow', 'Yoobin', 3)
>>> cat2.fullness # use fullness value that was passed in
3
"""
super().__init__(name, owner)
self.fullness = fullness
self.is_hungry = False

def talk(self):
"""
>>> Cat('Thomas', 'Tammy').talk()
Thomas says meow!
>>> Cat('Meow Meow', 'ThuyAnh').talk()
Meow Meow says meow!
"""
print(self.name + ' says meow!')

def get_hungry(self):
"""
>>> cat = Cat('Thomas', 'Tammy', 2)
>>> cat.is_hungry
False
>>> cat.fullness
2
>>> cat.get_hungry()
>>> cat.is_hungry
False
>>> cat.fullness
1
>>> cat.get_hungry()
>>> cat.is_hungry
True
>>> cat.fullness
0
>>> cat.get_hungry()
Thomas is hungry.
>>> cat.is_hungry
True
>>> cat.fullness
0
"""
if self.fullness > 0:

self.fullness -= 1
if self.fullness == 0:

self.is_hungry = True
else:

print(f"{self.name} is hungry.")

def eat(self, food):
"""
>>> cat = Cat('Crookshanks', 'Hermione', 1)
>>> cat.eat('tuna')
Crookshanks is not hungry.
>>> cat.is_hungry
False
>>> cat.fullness
1
>>> cat.get_hungry()
>>> cat.eat('tuna')
Crookshanks ate a tuna!
>>> cat.is_hungry
False
>>> cat.fullness
5
>>> Cat.default_fullness = 3
>>> for i in range(5):
... cat.get_hungry()
>>> cat.eat('tuna')
Crookshanks ate a tuna!
>>> cat.is_hungry
False
>>> cat.fullness
3
"""
if self.is_hungry:

self.fullness = Cat.default_fullness
self.is_hungry = False
print(f"{self.name} ate a {food}!")

else:
print(f'{self.name} is not hungry.')

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Linked Lists
	Q1: Sum Two Ways
	Q2: Every Other

	Inheritance
	Q3: Cat

