DATA C88C Trees
Summer 2025 Discussion 9: July 24, 2029

Trees

For a Tree instance t: - Its root label can be any value, and t.label evaluates to it. - Its branches are all Tree
instances, and t.branches evaluates to a list of branches, which is a list of Tree instances. - It is called a leaf if it
has no branches, and t.is_leaf () returns whether t is a leaf. - A new Tree with the same root label and branches

can be constructed with Tree(t.label, t.branches).

Here’s an example tree t1, for which its branch t1.branches[1] is t2.

t2
t1

Tree(5, [Tree(6), Tree(7)])
Tree(3, [Tree(4), t2])

B This is not in a box
because itis justa | |This is a list of trees. L
number, not a tree. Branches are trees. This is also a tree.
t1: t1.label: 3 t1.branches: @ ,

(6) (7

t1.branches[1]:

3 N

Example Tree

A path is a sequence of nodes in which each is the parent of the next.

You don’t need to know how the Tree class is implemented in order to use it correctly, but here is the implementation
from lecture.

2 Trees

class Tree:
"""A tree is a label and a list of branches."""
def __init__(self, label, branches=[]):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)

self.branches = list(branches)

def is_leaf (self):
return not self.branches

The rest of the class just determines how trees are displayed.

def __repr__(self):
if self.branches:
branch_str = ', ' + repr(self.branches)

else:

branch_str
return 'Tree({0}{1})'.format(repr(self.label), branch_str)

def __str__(self):

return '\n'.join(self.indented())

def indented(self):
lines = []
for b in self.branches:
for line in b.indented():
lines.append(' ' + line)
return [str(self.label)] + lines

Q1: Min Tree

What value is bound to result?

get_label = lambda t: t.label
result = min(max([tl, t2], key=get_label).branches, key=get_label).label

Solution

6: max([tl, t2], key=get_label) evaluates to the t2 tree because its label 5 is larger than t1’s label 3. Among

t2’s branches (which are leaves), the left one labeled 6 has a smaller label.

Here’s a quick refresher on how key functions work with max and min,

max (s, key=f) returns the item x in s for which f (x) is largest.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Trees 3

>>> s = [-3, -5, -4, -1, -2]
>>> max(s)

-1

>>> max(s, key=abs)

-5

>>> max([abs(x) for x in s])
5

Therefore, max ([t1, t2], key=get_label) returns the tree with the largest label, in this case t2.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Trees

Q2: Has Path

Implement has_path, which takes a Tree instance t and a list p. It returns whether there is a path from the root of
t with labels p. For example, t1 has a path from its root with labels [3, 5, 6] but not [3, 4, 6] or [5, 6].

Important: Before trying to implement this function, discuss these questions from lecture about the recursive call
of a tree processing function: - What recursive calls will you make? - What type of values do they return? - What

do the possible return values mean? - How can you use those return values to complete your implementation?

If you get stuck, you can view our answers to these questions by clicking the hint button below, but please don’t do

that until your whole group agrees.
What recursive calls will you make?

As you usual, you will call has_path on each branch b. You’ll make this call after comparing p[0] to t.label, and
so the second argument to has_path will be the rest of p: has_path(b, p[1:1).

What type of values do they return?

has_path always returns a bool value: True or False.

What do the possible return values mean?

If has_path(b, p[1:]) returns True, then there is a path through branch b for which p[1:] are the node labels.
How can you use those return values to complete your implementation?

If you have already checked that t.label is equal to p[0], then a True return value means there is a path through
t with labels p using that branch b. A False value means there is no path through that branch, but there might be
path through a different branch.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Trees 5

def has_path(t, p):
"""Return whether Tree t has a path from the root with labels p.

>>> t2 = Tree(5, [Tree(6), Tree(7)])

>>> t1 = Tree(3, [Tree(4), t2])

>>> has_path(tl, [5, 6]) # This path is not from the root of ti
False

>>> has_path(t2, [5, 6]) # This path is from the root of t2
True

>>> has_path(t1l, [3, 5]) # This path does not go to a leaf, but that's ok
True

>>> has_path(tl, [3, 5, 6]) # This path goes to a leaf

True

>>> has_path(tl, [3, 4, 5, 6]) # There is no path with these labels
False

if p == [t.label]:

return True
elif t.label != p[0]:

return False
else:

for b in t.branches:

if has_path(b, p[1:]1):
return True

return False

If your group needs some guidance, you can click on the hints below, but please talk with your group first before
reading the hints.

The first base case should check whether p is a list of length one with the label of t as its only element. The second
base case should check whether the first element of p matches the label of t.

When entering the recursive case, your code should already have checked that p[0] is equal to t.label, and so all
that’s left to check is that p[1:] contains the labels in a path through one of the branches. One way is with this

template:

for

if ____

return True

return False

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Trees
	Q1: Min Tree
	Q2: Has Path

